傳感器、大數(shù)據(jù)、機器學習、人工智能和機器人是怎樣擰在一起了呢?在人工智能時代硬件和軟件是共生演化的,彼此影響的呢?
“物聯(lián)網(wǎng)”、“大數(shù)據(jù)”和“機器人”等,其實這些趨勢是相互聯(lián)系在一起的,擰成一個大趨勢, 在這個鏈條里,每一環(huán)都會對下一環(huán)產(chǎn)生影響,如此產(chǎn)生積極的循環(huán)。 各種連接的設備里的傳感器會產(chǎn)生大量數(shù)據(jù),海量數(shù)據(jù)使得機器學習成為可能,機器學習的結果就是AI,而AI又指導機器人去更準確地執(zhí)行任務,機器人的行動又會觸發(fā)傳感器。這整個就是一個完整的循環(huán)。
1.傳感器產(chǎn)生數(shù)據(jù)
到2014年,連接到互聯(lián)網(wǎng)的設備超過了世界人口的總和。 Cisco預測,到2020年,將有500億個相互連接的設備。而這些設備中大多都會安傳感器,可能用Electric Imp內嵌傳感器,或者用Estimote外接一個傳感器。
設備中的傳感器會產(chǎn)生前所未有的海量數(shù)據(jù)。
2.數(shù)據(jù)支撐機器學習
在2020年,預計有35ZB的數(shù)據(jù)產(chǎn)生,也就是2009年數(shù)據(jù)量的44倍。到時候,不管是結構化的、或更可能是沒有結構化的數(shù)據(jù)都可以通過機器來處理,從而獲得大量洞見。
3.機器學習改善AI
機器學習依靠數(shù)據(jù)處理和模式識別,從而讓計算機不需要編程就能去學習。現(xiàn)在的海量數(shù)據(jù)和計算能力都在驅使機器學習的突破。
機器學習的十足威力,看看Google就知道了。
Google就是利用機器學習,把法國每一個企業(yè)的位置、每一個住房、每一條街都繪制在地圖上了。整個過程只需1個小時。
4.人工智能指導機器人行動
隨著計算機已經(jīng)在象棋和路標方面做得比人類好了,我們就有理由對未來有更多期待。隨著更多的傳感器采集到的數(shù)據(jù)越來越多,這能優(yōu)化更多的機器學習算法,從而我們可以合乎邏輯地推斷,與機器人結合的計算機執(zhí)行任務的能力會呈指數(shù)級增長。
5.機器人采取行動
不僅數(shù)以百計的公司在制作可以完成各種工作的機器人,機器人本身也會變得越來越智能, 而且借助AI的進步,還能完成很多我們夢寐以求的任務。
6.行動觸發(fā)傳感器
機器采取行動觸發(fā)傳感器來收集數(shù)據(jù),從而整個循環(huán)就完整了。
這就是整個人工智能生態(tài)的技術鏈。
人工智能技術優(yōu)化傳感器系統(tǒng)
人工智能技術能夠對傳感器系統(tǒng)有所幫助,它們是:基于知識的系統(tǒng)、模糊邏輯、自動知識收集、神經(jīng)網(wǎng)絡、遺傳算法、基于案例推理和環(huán)境智能。這些技術在傳感器系統(tǒng)中的應用越來越廣泛,不僅因為它們確實有效,還因為今天的計算機應用越來越普及。
這些人工智能技術具有低的計算復雜度,可以應用于小型傳感器系統(tǒng)、單一傳感器或者采用低容量微型控制器陣列的系統(tǒng)。正確應用人工智能技術將會創(chuàng)造更多富有競爭力的傳感器系統(tǒng)和應用。
人工智能優(yōu)先域的其他技術進步也將會給傳感器系統(tǒng)帶來沖擊,包括數(shù)據(jù)挖掘技術、多主體系統(tǒng)和分布式自組織系統(tǒng)。環(huán)境傳感技術能夠將很多微型電子處理器和傳感器集成到日常物品中,使其具有智能。它們可以創(chuàng)造智能環(huán)境,與其他智能設備通訊,并與人類實現(xiàn)交互。給出的建議能夠幫助用戶更加直觀地完成任務,但是這種集成技術的后果將會很難預測。使用環(huán)境智能和多種人工智能技術的組合能夠將這種技術發(fā)揮到極致。
創(chuàng)建更智能的傳感器系統(tǒng)
可以采用人工智能對傳感器系統(tǒng)進行優(yōu)化。人工智能作為計算機科學的一個分支出現(xiàn)于20世紀50年代,它繁衍出了很多功能強大的工具,在傳感器系統(tǒng)中具有巨大作用,能夠自動解決那些原本需要人類智能才能夠解決的問題。
雖然人工智能進入工業(yè)優(yōu)先域的進程較為緩慢,但是它必將帶來靈活性、可重新配置能力和可靠性方面的進步。全新的系統(tǒng)設備在越來越多的任務中表現(xiàn)出超過人類的性能。隨著它們與人類越來越緊密,我們將人類大腦與計算機能力結合起來,實現(xiàn)商討、分析、推論、通訊和發(fā)明。
人工智能結合了多種先進技術,賦予了機器學習、采納、決策的能力,給予他們全新的功能。這一成就依賴于神經(jīng)網(wǎng)絡、能手系統(tǒng)、自組織系統(tǒng)、模糊邏輯和遺傳算法等技術,人工智能技術將其應用優(yōu)先域擴展到了很多其他優(yōu)先域,其中一些優(yōu)先域需要對傳感器信息進行解析和處理,例如裝配、生物傳感器、建筑建模、計算機視覺、切割工具診斷、環(huán)境工程、力值傳感、健康監(jiān)控、人機交互、網(wǎng)絡應用、激光銑削、維護和檢查、動力輔助、機器人、傳感器網(wǎng)絡和遙控作業(yè)等等。
這些人工智能方面的發(fā)展被引入到了更加復雜的傳感器系統(tǒng)中。點擊鼠標、輕敲開關或者大腦的思考都會將任何傳感器數(shù)據(jù)轉化為信息并發(fā)送給你。近期此項研究已經(jīng)有所斬獲, 在如下七個優(yōu)先域中人工智能可以幫助傳感器系統(tǒng)。